The national influenza surveillance system in New Zealand is an essential public health component for assessing and implementing strategies to control influenza. This report summarises the data collected on influenza-like illness (ILI) from sentinel general practice (GP) surveillance and non-sentinel surveillance for week 30 (23–29 July 2012).

Summary

- ILI through sentinel surveillance was reported from 19 out of 20 District Health Boards (DHB) with a national consultation rate of 125.2 per 100 000 (483 ILI consultations).
- A total of 556 swabs were received from sentinel (85) and non-sentinel (471) surveillance.
- 256 viruses were identified: A(H3N2) (156) including five A/Perth/16/2009 (H3N2)-like virus, A (Not subtyped) (59), A(H1N1)pdm09 (25) including two A/California/7/2009 (H1N1)-like, and B (Lineage not determined) (16).

Influenza activity continued to increase in week 30. Influenza A(H3N2) viruses remain the predominant virus in many regions particularly in Canterbury DHB. These viruses do not appear to demonstrate a major antigenic drift, nothing extraordinary.

INFLUENZA-LIKE ILLNESS SURVEILLANCE

In the past week, a total of 483 consultations for ILI were reported from 82 general practices in 19 out of 20 DHBs. This gives a weekly consultation rate of 125.2 per 100 000 patient population, an increase from 108.5 per 100 000 reported in week 29. Figure 1 shows the weekly national consultation rates for 2007–2012 to date.
* A weekly rate <50 ILI consultations per 100 000 patient population is considered baseline activity. A rate of 50–249 is considered indicative of normal seasonal influenza activity, and a rate of 250–399 indicative of higher than expected influenza activity. A rate >400 ILI consultations per 100 000 patient population indicates an epidemic level of influenza activity.

Figure 2 compares the consultation rates for ILI for each DHB over the past week. Waitemata DHB had the highest consultation rate (309.6 per 100 000, 30 cases), followed by Canterbury (220.0 per 100 000, 156 cases), Southern (181.4 per 100 000, 104 cases), South Canterbury (142.6 per 100 000, 11 cases), Auckland (131.4 per 100 000, 26 cases), Hawke’s Bay (124.7 per 100 000, 24 cases), and Tairawhiti (124.5 per 100 000, 4 cases).
Figure 3. Consultation rates for ILI mapped by DHB for week 30, 2012

Influenza Surveillance NZ
Week 30

Consultations for influenza-like illness (per 100,000 practice patients)

- No data
- No activity (0)
- Baseline (<50)
- Normal (50 - 249)
- High activity (250 - 399)
- Epidemic (≥400)

Code District Health Board
AK Auckland
BP Bay of Plenty
CB Canterbury
CC Capital and Coast
CM Counties Manukau
HB Hawke’s Bay
HU Hutt Valley
LS Lakes
MC MidCentral
NL Northland
NM Nelson Marlborough
SC South Canterbury
SN Southern
TK Taranaki
TW Tairawhiti
WC West Coast
WG Whanganui
WK Waikato
WM Waitemata
WR Wairarapa
VIROLOGICAL SURVEILLANCE

A total of 85\(^1\) swabs were received by virology laboratories from sentinel surveillance. Of these, 47 viruses were identified (Figure 4): A(H3N2) (32), A (Not subtyped) (7), A(H1N1)pdm09 (4), A/Perth/16/2009 (H3N2)-like (3), and B (Lineage not determined) (1). The distribution by DHB is shown in Table 1.

Table 1. Influenza viruses from sentinel surveillance for week 30 by DHB

<table>
<thead>
<tr>
<th>Antigenic strain</th>
<th>AK/WM</th>
<th>TW</th>
<th>TK</th>
<th>HB</th>
<th>MC</th>
<th>CC</th>
<th>NM</th>
<th>CB</th>
<th>SN</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (Not subtyped)</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>A(H3N2)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>A/Perth/16/2009 (H3N2)-like</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>B (Lineage not determined)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>16</td>
<td>5</td>
<td>47</td>
</tr>
</tbody>
</table>

In addition, 471\(^1\) swabs were received by virology laboratories from non-sentinel surveillance. Of these, 209 viruses were identified (Figure 5): A(H3N2) (119), A (Not subtyped) (52), A(H1N1)pdm09 (19), B (Lineage not determined) (15), A/California/7/2009 (H1N1)-like (2), and A/Perth/16/2009 (H3N2)-like (2). The distribution by DHB is shown in Table 2.

\(^1\) Data is from 5/6 virology laboratories.
Table 2. Influenza viruses from non-sentinel surveillance for week 30 by DHB

<table>
<thead>
<tr>
<th>Antigenic strain</th>
<th>AK/WM</th>
<th>CM</th>
<th>WK</th>
<th>LS</th>
<th>TW</th>
<th>TK</th>
<th>MC</th>
<th>CC</th>
<th>CB</th>
<th>SC</th>
<th>SN</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (Not subtyped)</td>
<td>31</td>
<td>3</td>
<td>14</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>52</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td>3</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>A(H3N2)</td>
<td>8</td>
<td>13</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>74</td>
<td>1</td>
<td>1</td>
<td>119</td>
</tr>
<tr>
<td>A/California/7/2009 (H1N1)-like</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>A/Perth/16/2009 (H3N2)-like</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>B (Lineage not determined)</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>38</td>
<td>24</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>76</td>
<td>1</td>
<td>1</td>
<td>209</td>
</tr>
</tbody>
</table>

Figure 5. Total influenza viruses from non-sentinel surveillance by type and week reported, week 18–30 and the total percentage positive from the swabs received

Figure 6 shows the cumulative total of influenza viruses confirmed (sentinel and non-sentinel surveillance) from week 1 to the end of week 30 (29 July 2012) in each DHB. A total of 1275 influenza viruses were identified: influenza A(H3N2) (849) including 60 A/Perth/16/2009 (H3N2)-like viruses, B (114) including four of B/Brisbane/60/2008-like (belonging to the B/Victoria lineage) and 21 B/Wisconsin/1/2010-like viruses (belonging to the B/Yamagata lineage), A(H1N1)pdm09 (168) including 23 A/California/7/2009 (H1N1)-like virus, and A (Not subtyped) (144). The highest numbers were from the Canterbury DHB, followed by Counties Manukau and Auckland/Waitemata DHBs.

Note: The 2012 southern hemisphere winter influenza vaccine has the following composition: A/California/7/2009(H1N1)-like, A/Perth/16/2009(H3N2)-like and B/Brisbane/60/2008-like strains.
The currently circulating A(H3N2) viruses in New Zealand do not appear to demonstrate a major antigenic drift. The antigenic typing results to date characterise them as the A/Perth/16/2009-like strain that is included in the current Southern Hemisphere vaccine. The genetic sequencing results from ESR and WHOCC-Melbourne showed a minor drift for the most recent isolated A(H3N2) viruses from New Zealand. The current A(H3N2) viruses present a different picture from the situation that occurred in 1996 and 2003 when a major antigenic drift occurred for A(H3N2) resulting in a significant additional impact on morbidity and mortality.

Influenza A(H3N2) has been the most predominant subtype over the past 20 years in New Zealand. However, prior to 2012 it has not circulated widely in New Zealand since 2007. This may have led to some reduction in immunity in the general population who do not get the annual influenza immunisation, and therefore an increase in their susceptibility to A(H3N2) infections. This may be a contributing factor to the current A(H3N2) predominance in many regions in New Zealand.

In Australia, the antigenic typing results did not detect much antigenic drift for majority of their A(H3N2) viruses and the antigenic typing results showed that they were similar to A/Perth/16/2009-like strain. However, genetic analysis indicated a minor drift and these A(H3N2) viruses are characterised as A/Victoria/361/2011-like viruses. The Australian Department of Health and Ageing noted that it is expected that the vaccine would still offer significant protection. This is based on the fact that the drift between the A/Perth/16/2009-like and A/Victoria/361/2011-like viruses is small.